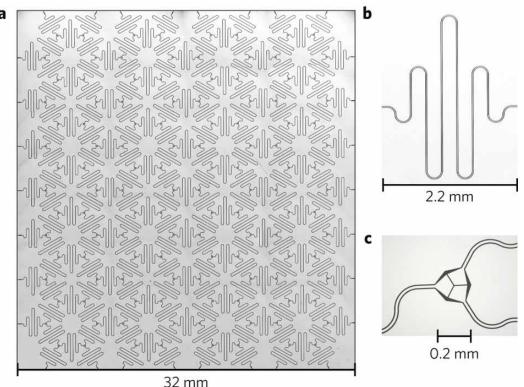
Details: arXiv:1311.3227 (2013)

Perturbative approach to open circuit QED systems

Andy C.Y. Li (Northwestern U)

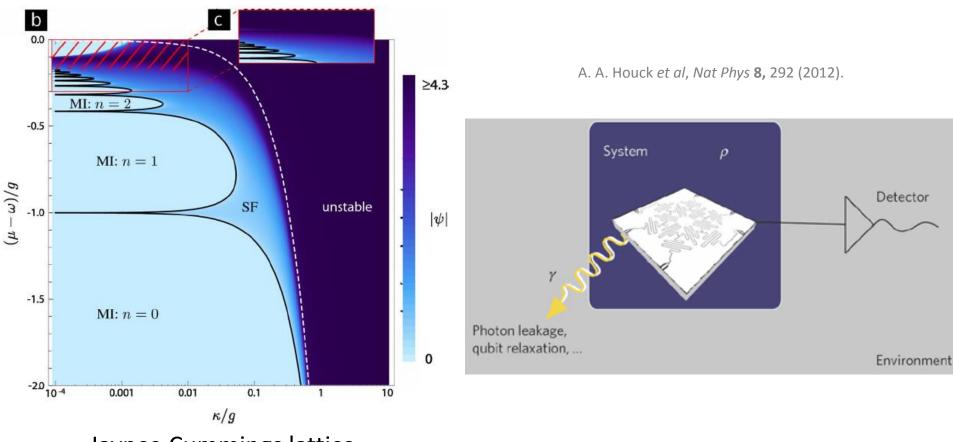


A. A. Houck *et al*, *Nat Phys* **8**, 292 (2012).

Francesco Petruccione (U of KwaZulu-Natal)

Jens Koch (Northwestern U)

<u> Motivation – Quantum Simulators</u>



- Jaynes-Cummings lattice
- Closed systems: Superfluid (SF) to Mott Insulator (MI) phase transition
- Circuit QED systems: zero chemical potential for photon, external drive, photon leakage and qubit relaxation.

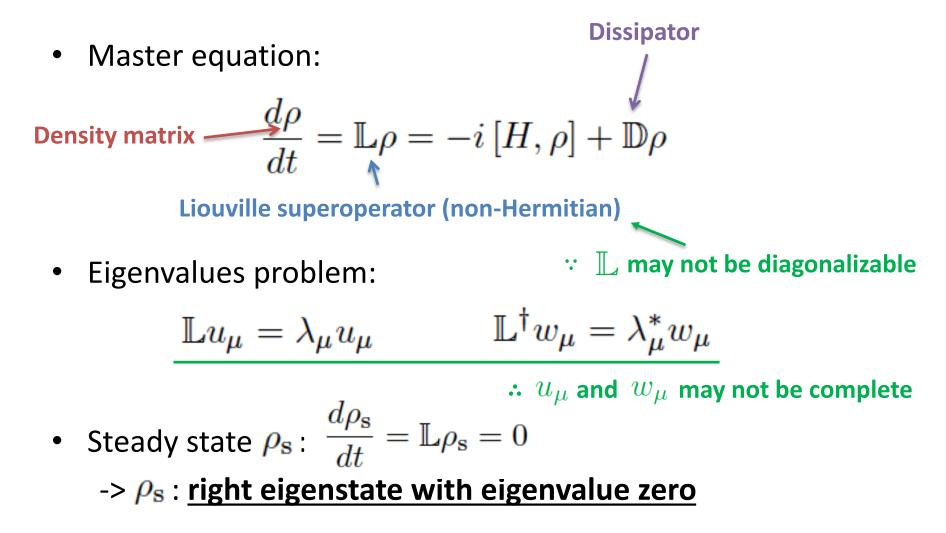
=> Open systems

<u>Outline</u>

 Perturbation Theory (PT) for Markovian open quantum systems

• PT vs exact result: good agreement

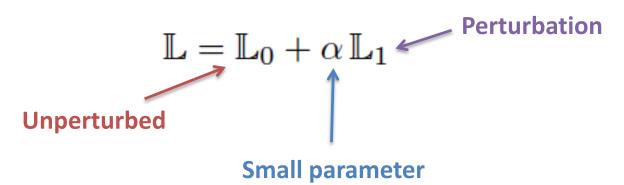
Master equation



Perturbation Theory (PT)

- Difficult to obtain the eigenvalues and eigenstates
 e.g. 16 spins

 <u>L</u>: 4¹⁶ X 4¹⁶ ≈ 4 billion X 4 billion!
- Approximation: PT (analogous to closed-system PT) separate the Liouville superoperator



Previous work on open-system PT

(F Benatti et al 2011 J. Phys. A: Math. Theor. 44 155303)

IOP PUBLISHING

JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 44 (2011) 155303 (12pp)

doi:10.1088/1751-8113/44/15/155303

• Series expansion of the steady state

 $\rho_{\rm s} = \sum_{j \ge 0} \alpha^j \rho_{\rm s}^{(j)}$

- Cannot apply to other eigenstates of $\mathbb L$
- Positivity of $ho_{
 m S}$ is not mentioned

Asymptotic entanglement and Lindblad dynamics: a perturbative approach

F Benatti^{1,2}, A Nagy³ and H Narnhofer⁴

¹ Dipartimento di Fisica Teorica, Università di Trieste, 34014 Trieste, Italy
 ² Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, 34014 Trieste, Italy
 ³ Budapest University of Technology and Economics, Muegyetem rkp. 3-9, Hungary

⁴ Institut für Theoretische Physik, A-1090 Wien, Austria

E-mail: benatti@ts.infn.it

Received 29 December 2010, in final form 23 February 2011 Published 18 March 2011 Online at stacks.iop.org/JPhysA/44/155303

Density-matrix PT

• The zeroth-order eigenvalue problem can be solved.

$$\mathbb{L}_0 u^{(0)}_{\mu} = \lambda^{(0)}_{\mu} u^{(0)}_{\mu} \qquad \mathbb{L}_0^{\dagger} w^{(0)}_{\mu} = (\lambda^{(0)}_{\mu})^* w^{(0)}_{\mu}$$

• Series expansion

$$\mathbb{L} = \mathbb{L}_{0} + \alpha \mathbb{L}_{1} \qquad \lambda_{\mu} = \sum_{j=0}^{\infty} \alpha^{j} \lambda_{\mu}^{(j)} \qquad u_{\mu} = \sum_{j=0}^{\infty} \alpha^{j} u_{\mu}^{(j)}$$

$$\mathbb{L} u_{\mu} = \lambda_{\mu} u_{\mu}$$

Density-matrix PT

non-invertible and not necessarily diagonalizable

• Group terms of the same order of α

$$\begin{split} \left(\mathbb{L}_{0} - \lambda_{\mu}^{(0)} \right) u_{\mu}^{(j)} &= -\mathbb{L}_{1} u_{\mu}^{(j-1)} + \Delta_{\mu}^{(j)} & \text{inner product} \\ & \text{Solve} & \langle x, y \rangle \equiv \operatorname{Tr} \left[x^{\dagger} y \right] \\ \lambda_{\mu}^{(j)} &= \left\langle w_{\mu}^{(0)}, \mathbb{L}_{1} u_{\mu}^{(j-1)} \right\rangle - \sum_{k=1}^{j-1} \lambda_{\mu}^{(k)} \left\langle w_{\mu}^{(0)}, u_{\mu}^{(j-k)} \right\rangle \\ u_{\mu}^{(j)} &= \left(\mathbb{L}_{0} - \lambda_{\mu}^{(0)} \right)^{(-1)} \left(-\mathbb{L}_{1} u_{\mu}^{(j-1)} + \Delta_{\mu}^{(j)} \right) \end{split}$$

Moore-Penrose pseudoinverse

Steady state: issue of positivity

• probability is non-negative,

∴ positive-semidefinite

• Steady state

$$\rho_{\rm s} = \sum_{j=0}^{\infty} \alpha^j \rho_{\rm s}^{(j)}$$

• Truncation to *M*-th order

$$\rho_{\rm s}^{{\rm a};M} = \sum_{j=0}^{M} \alpha^{j} \rho_{\rm s}^{(j)}$$

Amplitude-matrix PT

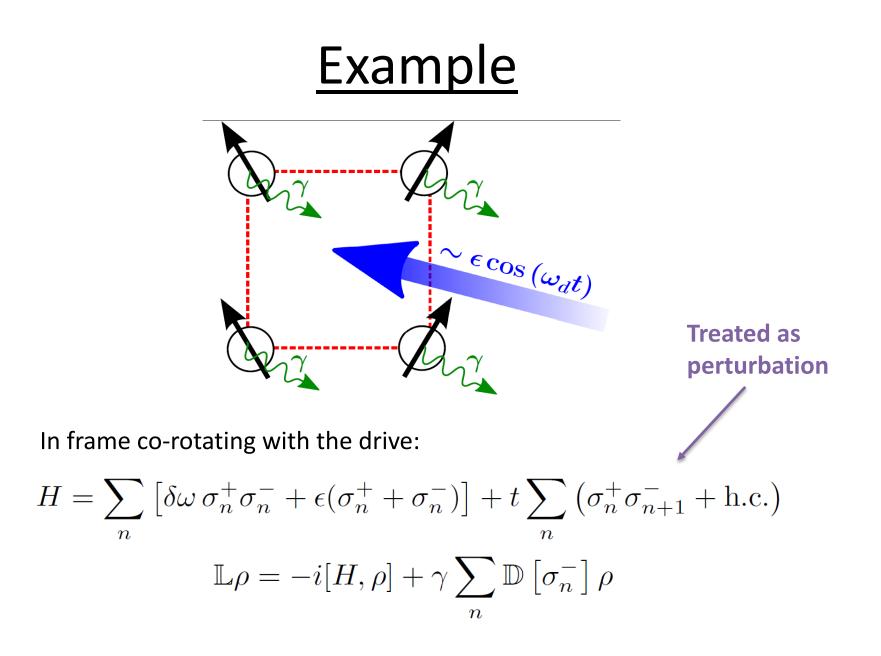
- Since density matrix is positive-semidefinite, $\rho = \zeta \zeta^{\dagger}$ — ζ amplitude matrix
- If $ho_{
 m s}$ is positive-definite, $\zeta_{
 m s}$ is uniquely defined by Cholesky decomposition and has a series expansion $\zeta_{
 m s} = \sum_{j=0}^{\infty} \alpha^j \zeta_{
 m s}^{(j)}$

$$\rho_{\rm s}^{{\rm a};M} = \left(\sum_{j=0}^{M} \alpha^j \zeta_{\rm s}^{(j)}\right) \left(\sum_{j=0}^{M} \alpha^j \zeta_{\rm s}^{(j)}\right)^{\dagger} \text{ is always positive}$$

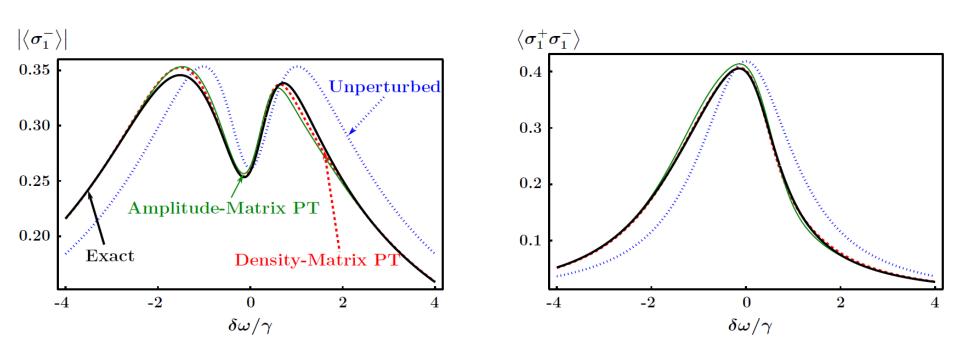
• Determination of each order:

$$\begin{split} \zeta_{\rm s}^{(0)} \left(\zeta_{\rm s}^{(0)}\right)^{\dagger} = & \rho_{\rm s}^{(0)}, \qquad \qquad \text{(Cholesky decomposition)} \\ \mathbb{Z}_{0} \zeta_{\rm s}^{(j)} = & \rho_{\rm s}^{(j)} - \sum_{k=1}^{j-1} \zeta_{\rm s}^{(k)} \left(\zeta_{\rm s}^{(j-k)}\right)^{\dagger} \qquad \qquad \text{(Recursive relation)} \end{split}$$

where $\mathbb{Z}_0 \bullet = \zeta_{\mathrm{s}}^{(0)}(\bullet)^\dagger + \bullet(\zeta_{\mathrm{s}}^{(0)})^\dagger$.



Second-order PT



Drive strength: $\frac{\epsilon}{\gamma}=0.8$

Spin-spin coupling strength: $\frac{t}{\gamma} = 0.4$

<u>Summary</u>

- Density matrix PT
 - perturbative correction to eigenvalues and eigenstates of L (e.g. steady state)
- Amplitude matrix PT
 - tackles the issue of positivity
- Two schemes provide similar accuracy for expectation values
- Outlook: lattice systems
 - systematic hierarchy of coupled clusters of sites